
COMP3161/COMP9164 Supplementary Lecture Notes

Subtyping

Gabriele Keller Liam O’Connor Johannes Åman Pohjola

November 6, 2024

1 Subtyping

With type classes, the programmer can use the same overloaded function symbol + for addition
of both floating point values and integer values, and the compiler or runtime will figure out which
one to use. However, the following expression would still be rejected by the MinHs compiler:

1 + 1.75

This is because addition can be applied to two integers or two floats, but not a combination of
both.1 We explicitly have to convert the Int value to Float to add the two values.

C solves this “problem” using something called integer promotion: the basic types are ordered
and if operations like + or == are applied to mixed operands, the one which is the lowest in the
hierarchy is automatically cast to the higher type. This is quite convenient, but can easily lead to
unexpected behaviour and subtle bugs, in particular with respect to signed/unsigned types.

The idea behind subtyping is similar to the approach in C. The key technical device is that
that types can be partially ordered in a subtype relationship

τ ≤ σ

such that, whenever a value of some type σ is required, it is also fine to provide a value of type τ ,
as long as τ is a subtype of σ. For example, we could have the following subtype relationship:

Int ≤ Float ≤ Double

With subtyping, it would then be ok to have

1 +Float 1.75

because even though the LHS is an Int, any subtype of Float is acceptable.

1.1 Coercion Interpretation

There are different ways to interpret the subtype relationship. One is to define τ to be a subtype
of σ if τ ⊆ σ. After all, in mathematics, the integers are a subset of the rationals. However, this
interpretation is quite restrictive for a programming language: Int is not a subset of Float since
they have very different representations. However, there is an obvious coercion from Int to Float.
For our study of subtyping, we will focus on this so-called coercion interpretation of subtyping: τ
is a subtype of σ, if there is a sound 2 coercion from values of type τ to values of type σ.

As another example, consider a Graph and a Tree. Since trees are a special case of graphs,
trees can be converted into graphs, and we can view the tree type as subtype of the graph type in
the coercion interpretation.

1In Haskell, this expression by itself would be fine, as constants are also overloaded and 1 has type
Num a → a. However, the compiler would also reject the addition of integer and float values, for example
(1 :: Int) + (1.7 :: Float).

2More about that later

1



1.2 Properties

For a subtyping relationship to be sound, it has to be reflexive, transitive, and antisymmetric
(with respect to type isomorphism). In other words ≤ is a partial order. This holds both for
the subset interpretation and the coercion interpretation. For the subset interpretation, all three
properties follow directly from the properties of the subset relation. In the coercion interpretation,
reflexivity holds because the identity function is a coercion from τ → τ . Transitivity holds since,
given a coercion function from f : τ1 → τ2 and g : τ2 → τ3, the composition of f and g result in a
coercion function from τ1 → τ3.

In the coercion relation, the antisymmetry of subtyping means that if we can coerce τ to ρ and
ρ back to τ , then it must be the case that τ ≃ ρ. This is only true if the coercion functions are
injective — that is, we can map each element of the domain (input) of the function to a unique
element of the codomain (output).

1.3 Coherency of Coercion

Coercion should be coherent. That is, if there are two ways to coerce a value, both coercions
should yield the same result.

For example, let us assume we define Int to be a subtype of Float , and both to be subtypes of
String , with coercion functions

intToFloat :: Int → Float

intToString :: Int → String

floatToString :: Float → String

On first sight, this looks reasonable. It is not coherent, however, because there are two coercion
function from Int to String : the provided function intToString , but also intToFloat composed
with floatToString . Unfortunately, applied to the number 3, for example, one would result in the
string ”3”, the other in ”3.0”.

One reason why type promotion in C can be so tricky is precisely that it is not coherent in
this way.

1.4 Variance

If we add subtyping to MinHS, one question that arises is how the subtyping relationship interacts
with our type constructors. For example, if Int ≤ Float, what about pairs, sums and function
over these types? How do they relate to each other?

For pairs and sums, the answer is quite straight forward. Obviously, given a coercion function
intToFloat , we can easily define coercion functions on pairs and sums:

p1 :: (Int × Int) → (Float × Float)
p1 (x , y) = (intToFloat x , intToFloat y)

p2 :: (Int × Float) → (Float × Float)
p2 (x , y) = (intToFloat x , y)
. . .

s1 :: (Int+Int) → (Float + Float)
s1 x = case x of

InL v → intToFloat v

2



InR v → intToFloat v
. . .

This means that, if two types τ1 and τ2 are subtypes of σ1 and σ2, respectively, then the product
type τ1 × τ2 is also a subtype of σ1 × σ2. The same is true for sums. More formally, we have:

τ1 ≤ ρ1 τ2 ≤ ρ2
(τ1 × τ2) ≤ (ρ1 × ρ2)

τ1 ≤ ρ1 τ2 ≤ ρ2
(τ1 + τ2) ≤ (ρ1 + ρ2)

The following diagram also shows the subtype relationship between pair types, for Int and Float:

Int× Int Int× Float

Float× Int Float× Float

Since product and sum types interact with subtyping in such a natural way, it is tempting to
expect the same to work for all type constructors. Resist this temptation.

Consider function types. Is Int → Int a subtype of Float → Int? That is, if a function of
type Float → Int is required, would it be ok to provide a function of type Int → Int instead?
Considering that the type Int is more restricted than the type Float, this means that a function
which only works on the “smaller” type Int is also, in some sense, less powerful. Or, coming
back to our second example, if we need a function to process any graph, then a function which
only works on trees (and maybe relies on the fact that there are no cycles in a tree) is clearly not
sufficient. We are also not able to define a coercion function in terms of our coercion function
intToFloat :

c :: (Int → Float) → (Float → Float)

The other direction, however, is actually quite easy:

c′ :: (Float → Float) → (Int → Float)
c′ f = let g x = f (intToFloat x )

in g

Therefore, somewhat surprisingly, we have (Float → Float) ≤ (Int → Float) .
So, what about the result type of a function: is Int → Int as subtype of Int → Float, vice

versa, or are these types not in a subtype relationship at all? If we need a function which returns
a Float and get one that returns an Int, that’s ok since Ints can be coerced to Floats. Similarly,
if we need a function which returns a graph, and we get a tree, that’s ok since a tree is a special
case of a graph.

c′′ :: (Int → Int) → (Int → Float)
c′′ f = let g x = intToFloat (f x ) in g

To summarise, the subtype relationship on functions over Int and Float is as follows (of course,
you can substitute any type τ for Int, ρ for Float here, as long as τ ≤ ρ):

Int → Int Int → Float

Float → Int Float → Float

3



The subtype propagation rule for function types expresses exactly the same relationship:

τ1 ≤ ρ1 τ2 ≤ ρ2
(ρ1 → τ2) ≤ (τ1 → ρ2)

Another example of a type which interacts with subtyping in a non-obvious manner are updateable
arrays and reference types. To understand what is happening, let us have a look at Haskell-style
updatable references. We have the following basic operations on this type:

newIORef :: a → IO (IORef a) — Returns an initialised reference
writeIORef :: a → IORef a → IO () — Updates the value of a reference
readIORef :: IORef a → IO a — Returns the current value

All other operations can be expressed in terms of these three operations.
The question now is: if τ ≤ σ, what is the subtype relationship between IORef τ and IORef σ?

To check whether, for example, IORef Int ≤ IORef Float, think about what happens if we apply
writeIORef (1.5 :: Float) to an IORef Int instead of an IORef Float. Clearly, this would not
work, as the floating point value can’t be stored in an Int reference. It would be okay the other
way around: if we writeIORef (1 :: Int) apply to an IORef Float, it would be fine, since we could
first coerce the value to a Float and store the result in the Float reference. This seems to suggest
that IORef Float ≤ IORef Int.

However, if we assume that IORef Float ≤ IORef Int, we run into trouble with readIORef .
If readIORef expects an IORef Int, and we give it an IORef Float instead, readIORef will return
a floating point value which we cannot coerce to Int. In this case, the other direction would be
fine: if we expect an IORef Float, we could apply it to an IORef Int, and then cast the resulting
Int value to Float.

This means that τ ≤ σ implies no subtype relationship between IORef Float and IORefInt at
all: when a mutable reference of a certain type is required, we cannot substitute the reference for
a sub- or supertype: we must give exactly that type.

We encounter exactly the same situation with updatable arrays. In Java, the language allows
subtyping for arrays, at the cost of dynamic checks since this violates type safety.

Type constructors like product and sum, which leave the subtype relationship intact, as called
covariant. type constructors which reverse the relationship, lie the function type in its first ar-
gument, are called contravariant. Type constructors like IORef, which do not imply a subtype
relationship at all, are called invariant.

4


